<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="VerticalStudentView" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@vertical+block@2e0efc2c1842471c9e2ab5848777c224" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@7c4c08e84e1642a2a33a3c33e938cbba">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@7c4c08e84e1642a2a33a3c33e938cbba" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<p style="text-align: left;">This tutorial introduces xarray (pronounced <em style="box-sizing: border-box;">ex-array</em>), a Python library for working with labeled multi-dimensional arrays. It is widely used to handle Earth observation data, which often involves multiple dimensions — for instance, longitude, latitude, time, and channels/bands. It can also display metadata such as the dataset Coordinate Reference System (CRS).</p>
<p style="text-align: left;">Accessing data held in an <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.DataArray</span></code> or <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code> is very similar to calling values from dictionaries.</p>
<div style="box-sizing: border-box;">
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><strong style="box-sizing: border-box;">Note:</strong> This tutorial is about using xarray. An introduction to remote sensing datasets and more information on Earth observation products used on the Digital Earth Africa platform can be found in <a class="reference external" href="/courses/course-v1:digitalearthafrica+DEA101+2021/jump_to_id/2de47e98b0e946e8a429cfb5e8557fa9" target="_blank" style="box-sizing: border-box; color: #2980b9; text-decoration-line: none; cursor: pointer;">Session 2: Digital Earth Africa products</a>.</p>
</div>
<p style="text-align: left;">Follow the instructions below to download the tutorial and open it in the Sandbox.</p>
<section id="Download-the-tutorial-notebook" style="box-sizing: border-box; color: #000000;">
<h2 style="box-sizing: border-box; margin-top: 0px; font-weight: bold; font-size: 24px; color: #336699; text-align: left;">Download the tutorial notebook</h2>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><a class="reference external" href="/assets/courseware/v1/2f0bce1e8a10f124f1ffd4860f3df870/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block/05_download-xarray.ipynb" style="text-align: left; box-sizing: border-box; color: #3091d1; text-decoration-line: none; cursor: pointer; outline: 0px;" target="[object Object]">Download the Python basics 5 tutorial notebook</a></p>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><a download="guinea_bissau.nc" href="/assets/courseware/v1/3bf8043c113807b904f270bedf71f0ed/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block/guinea_bissau.nc" style="box-sizing: border-box; color: #2980b9; text-decoration-line: none; cursor: pointer;">Download the exercise NetCDF file (6 MB)</a></p>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;">To view this notebook on the Sandbox, you will need to first download the notebook and the NetCDF file to your computer, then upload it to the Sandbox. Ensure you have followed the set-up prerequisities listed in <a href="/courses/course-v1:digitalearthafrica+DEA101+2021/jump_to_id/9c210d02e6fe484a8ce67c67a1e9c2fa" target="[object Object]">Python basics 1: Jupyter, </a>and then follow these instructions:</p>
<ol class="arabic simple" style="box-sizing: border-box; margin-top: 0px; margin-bottom: 24px; padding-left: 0px; list-style-position: initial; list-style-image: initial; line-height: 24px; text-align: left;">
<li style="text-align: left; box-sizing: border-box; list-style: decimal; margin-left: 24px;">
<p style="text-align: left; box-sizing: border-box; line-height: 24px; margin: 0px; font-size: 16px;">Download the notebook by clicking the link above. Download the NetCDF file by clicking the second link above. If necessary, rename the NetCDF file to<span style="font-size: 1em; text-rendering: optimizelegibility; margin: 0px; padding: 0px; border: 0px; outline: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; line-height: 1.4em; font-family: 'Open Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; vertical-align: baseline; color: #313131;"> </span><span style="color: #313131; font-family: 'Open Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif;"> </span><code class="docutils literal notranslate" style="text-rendering: optimizelegibility; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; margin: 0px; padding: 2px 5px; border: 1px solid #e1e4e5; outline: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; line-height: 1.4em; vertical-align: baseline; border-radius: 3px; background-image: initial; background-color: #ffffff; color: #e74c3c; box-sizing: border-box; white-space: nowrap; max-width: 100%; overflow-x: auto;"><span class="pre" style="text-rendering: optimizelegibility; margin: 0px; padding: 0px; border: 0px; outline: 0px; font-style: inherit; font-variant: inherit; font-weight: inherit; font-stretch: inherit; line-height: 1.4em; font-family: inherit; vertical-align: baseline; box-sizing: border-box;">guinea_bissau.nc</span></code><span style="text-rendering: optimizelegibility; margin: 0px; padding: 0px; border: 0px; outline: 0px; font-variant-numeric: inherit; font-variant-east-asian: inherit; font-stretch: inherit; line-height: 1.4em; font-family: 'Open Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; vertical-align: baseline; color: #000000;">.</span></p>
</li>
<li style="text-align: left; box-sizing: border-box; list-style: decimal; margin-left: 24px;">
<p style="text-align: left; box-sizing: border-box; line-height: 24px; margin: 0px; font-size: 16px;">On the Sandbox, open the <strong style="box-sizing: border-box;">Training</strong> folder.</p>
</li>
<li style="text-align: left; box-sizing: border-box; list-style: decimal; margin-left: 24px;">
<p style="text-align: left; box-sizing: border-box; line-height: 24px; margin: 0px; font-size: 16px;">Click the <strong style="box-sizing: border-box;">Upload Files</strong> button as shown below.</p>
</li>
</ol>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><img alt="Upload button." class="no-scaled-link" src="https://learn.digitalearthafrica.org/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block@05_solution_uploadbutton.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; width: 400px;" /></p>
<ol class="arabic simple" start="4" style="box-sizing: border-box; margin-top: 0px; margin-bottom: 24px; padding-left: 0px; list-style-position: initial; list-style-image: initial; line-height: 24px; text-align: left;">
<li style="text-align: left; box-sizing: border-box; list-style: decimal; margin-left: 24px;">
<p style="text-align: left; box-sizing: border-box; line-height: 24px; margin: 0px; font-size: 16px;">Select the downloaded notebook using the file browser. Click <strong style="box-sizing: border-box;">OK</strong>.</p>
</li>
<li style="text-align: left; box-sizing: border-box; list-style: decimal; margin-left: 24px;">Repeat to upload the NetCDF (.nc) file to the <strong>Training </strong>folder. It may take a while for the upload to complete. </li>
<li style="text-align: left; box-sizing: border-box; list-style: decimal; margin-left: 24px;">
<p style="text-align: left; box-sizing: border-box; line-height: 24px; margin: 0px; font-size: 16px;">Both files will appear in the <strong>Training</strong> folder. Double-click the tutorial notebook to open it and begin the tutorial.</p>
</li>
</ol>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;">You can now use the tutorial notebook as an interactive version of this webpage.</p>
<div class="admonition note" style="box-sizing: border-box; -webkit-font-smoothing: antialiased; padding: 12px; line-height: 24px; margin-bottom: 24px; background: #e7f2fa;">
<p class="admonition-title" style="box-sizing: border-box; line-height: 1; margin: -12px -12px 12px; font-size: inherit; font-family: inherit; font-variant-numeric: normal; font-variant-east-asian: normal; font-weight: bold; font-stretch: normal; text-rendering: auto; -webkit-font-smoothing: antialiased; color: #ffffff; background: #6ab0de; padding: 6px 12px; text-align: left;">Note</p>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px; font-size: 16px; text-align: left;">The tutorial notebook should look like the text and code below. However, the tutorial notebook outputs are blank (i.e. no results showing after code cells). Follow the instructions in the notebook to run the cells in the tutorial notebook. Refer to this page to check your outputs look similar.</p>
</div>
</section>
</div>
</div>
</div>
<script type="text/javascript">
(function (require) {
require(['/static/js/dateutil_factory.be68acdff619.js?raw'], function () {
require(['js/dateutil_factory'], function (DateUtilFactory) {
DateUtilFactory.transform('.localized-datetime');
});
});
}).call(this, require || RequireJS.require);
</script>
<script>
function emit_event(message) {
parent.postMessage(message, '*');
}
</script>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="VerticalStudentView" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@vertical+block@e2a5b225912d413d98cd094163614a11" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@f59d9f76fdaa43b08cdc5a952a4f14bb">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@f59d9f76fdaa43b08cdc5a952a4f14bb" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<p style="text-align: left;">Xarray makes datasets easier to interpret when performing data analysis. To demonstrate this, we can start by opening a NetCDF file ( file suffix <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.nc</span></code><span style="color: #000000;">) of the area of Guinea-Bissau we used in the previous </span>matplotlib lesson<span>.</span></p>
<p style="text-align: left;">Please ensure you have renamed your downloaded <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.nc</span></code><span style="color: #e74c3c; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap;"> </span><span style="font-size: 1em;">file as </span> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">guinea_bissau.nc</span></code><span style="color: #000000;">.</span></p>
<p style="text-align: left;"></p>
</div>
</div>
<div class="vert vert-1" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@0eca64078b084075addf8633be167a4c">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@0eca64078b084075addf8633be167a4c" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h3>Recap</h3>
<p style="text-align: left;"><span><span>In the previous lesson, we plotted the </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.JPG</span></code><span style="font-family: Arial, sans-serif;"> version of the image using </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">imread</span></code><span style="font-family: Arial, sans-serif;"> and </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">imshow</span></code><span style="font-family: Arial, sans-serif;">.</span></span></p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="prompt highlight-none notranslate" style="box-sizing: border-box; margin: 0px; width: 4.5ex; padding-top: 5px; position: relative; user-select: none;">
<div class="highlight" style="box-sizing: border-box; background: none; border: none; overflow-x: auto; margin: 0px 0.3ex 0px 0px; padding: 0px; box-shadow: none; position: absolute; right: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 0px; overflow: hidden; border: none; box-shadow: none; background: none; color: #307fc1;"><span style="box-sizing: border-box; border: none; padding: 0px; margin: 0px; box-shadow: none; background: none;"></span>[1]:
</pre>
</div>
</div>
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Review of Python basics lesson 3: matplotlib</span>
<span class="o" style="box-sizing: border-box; color: #666666;">%</span><span class="k" style="box-sizing: border-box; color: #008000; font-weight: bold;">matplotlib</span> inline
<span class="kn" style="box-sizing: border-box; color: #008000; font-weight: bold;">import</span> <span class="nn" style="box-sizing: border-box; color: #0000ff; font-weight: bold;">numpy</span> <span class="k" style="box-sizing: border-box; color: #008000; font-weight: bold;">as</span> <span class="nn" style="box-sizing: border-box; color: #0000ff; font-weight: bold;">np</span>
<span class="kn" style="box-sizing: border-box; color: #008000; font-weight: bold;">from</span> <span class="nn" style="box-sizing: border-box; color: #0000ff; font-weight: bold;">matplotlib</span> <span class="kn" style="box-sizing: border-box; color: #008000; font-weight: bold;">import</span> <span class="n" style="box-sizing: border-box;">pyplot</span> <span class="k" style="box-sizing: border-box; color: #008000; font-weight: bold;">as</span> <span class="n" style="box-sizing: border-box;">plt</span>
<span class="n" style="box-sizing: border-box;">im</span> <span class="o" style="box-sizing: border-box; color: #666666;">=</span> <span class="n" style="box-sizing: border-box;">np</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">copy</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">plt</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">imread</span><span class="p" style="box-sizing: border-box;">(</span><span class="s1" style="box-sizing: border-box; color: #ba2121;">'Guinea_Bissau.JPG'</span><span class="p" style="box-sizing: border-box;">))</span>
<span class="n" style="box-sizing: border-box;">plt</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">imshow</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">im</span><span class="p" style="box-sizing: border-box;">)</span>
</pre>
</div>
</div>
</div>
<div class="nboutput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="prompt highlight-none notranslate" style="box-sizing: border-box; margin: 0px; width: 4.5ex; padding-top: 5px; position: relative; user-select: none;">
<div class="highlight" style="box-sizing: border-box; background: none; border: none; overflow-x: auto; margin: 0px 0.3ex 0px 0px; padding: 0px; box-shadow: none; position: absolute; right: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 0px; overflow: hidden; border: none; box-shadow: none; background: none; color: #bf5b3d;"><span style="box-sizing: border-box; border: none; padding: 0px; margin: 0px; box-shadow: none; background: none;"></span>[1]:
</pre>
</div>
</div>
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;"><matplotlib.image.AxesImage at 0x7f6fc79feba8>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;"><img alt="../_images/python_basics_05_xarray_9_1.png" src="https://learn.digitalearthafrica.org/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block@python_basics_05_xarray_9_1.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; padding: 5px; margin: 0px; float: left;" /></div>
</div>
<p></p>
</div>
</div>
<div class="vert vert-2" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@4495e7db62844d9890ec8fa6fd684998">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@4495e7db62844d9890ec8fa6fd684998" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h3 style="text-align: left;"><span>Load data with xarray</span></h3>
<p style="text-align: left;"><span>Using xarray, we will now read in a </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.nc</span></code><span style="color: #000000;"> file of the area. </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.nc</span></code><span> NetCDF files are a filetype used for storing scientific array-oriented data. </span></p>
<p style="text-align: left;"><span>Remembering that image data is an array, this makes both formats almost equivalent.</span></p>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;">We could also load the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.JPG</span></code> as a dataset using xarray, but the NetCDF file contains more metadata so it will be easier to interpret.</p>
<p style="text-align: left;">As usual, we will first import the xarray package.</p>
<div class="nbinput nblast docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-top: 5px; padding-bottom: 5px; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Import the xarray package as xr</span>
<span class="kn" style="box-sizing: border-box; color: #008000; font-weight: bold;">import</span> <span class="nn" style="box-sizing: border-box; color: #0000ff; font-weight: bold;">xarray</span> <span class="k" style="box-sizing: border-box; color: #008000; font-weight: bold;">as</span> <span class="nn" style="box-sizing: border-box; color: #0000ff; font-weight: bold;">xr</span>
</pre>
</div>
</div>
</div>
<div class="nbinput nblast docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 19px; width: 696.469px; padding-top: 5px; padding-bottom: 5px; font-family: Arial, sans-serif; text-align: left;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Use xarray to open the data file</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span> <span class="o" style="box-sizing: border-box; color: #666666;">=</span> <span class="n" style="box-sizing: border-box;">xr</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">open_dataset</span><span class="p" style="box-sizing: border-box;">(</span><span class="s1" style="box-sizing: border-box; color: #ba2121;">'guinea_bissau.nc'</span><span class="p" style="box-sizing: border-box;">)</span>
</pre>
</div>
</div>
</div>
<div class="nbinput docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 0px; width: 696.469px; padding-top: 5px; font-family: Arial, sans-serif; text-align: left;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Inspect the xarray.DataSet by</span>
<span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># typing its name</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span>
</pre>
</div>
</div>
</div>
<p style="text-align: left;"><img src="" alt="" /></p>
<p style="text-align: left;">Let’s inspect the data. This image (our dataset) has a height <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code> of 501 pixels and a width <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> of 500 pixels. It has 3 <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">variables</span></code>, which correspond to the red, green, and blue bands needed to plot a colour image. Each of these bands has a value at each of the pixels, so we have a total of 751500 values (the result of 501 x 500 x 3). Each of the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> and <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code> values are associated with a longitude and latitude and their values are stored under the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">Coordinates</span></code> section.</p>
<p style="text-align: left;">The <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.DataSet</span></code> uses numpy arrays in the backend. What we see above is functionally similar to a bunch of numpy arrays holding the image band measurements and the longitude/latitude coordinates, combined with a dictionary of key-value pairs that defines the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">Attributes</span></code> such as CRS and resolution (<code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">res</span></code>). That sounds more complicated, doesn’t it? Accessing the data through <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray</span></code> avoids the complications of managing uncorrelated numpy arrays by themselves. </p>
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; font-family: Arial, sans-serif; color: #000000;"><img alt="Xarray dataset breakdown" class="no-scaled-link" src="https://learn.digitalearthafrica.org/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block@dataset-diagram.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; width: 600px;" /></p>
<p style="text-align: left;"><em style="box-sizing: border-box;">A visualisation of an</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code><em style="box-sizing: border-box;">. The coordinates are each a single dimension;</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">latitude</span></code><em style="box-sizing: border-box;">,</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">longitude</span></code> <em style="box-sizing: border-box;">and</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">time</span></code><em style="box-sizing: border-box;">. Each</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">variable</span></code> <em style="box-sizing: border-box;">(in this case</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">temperature</span></code> <em style="box-sizing: border-box;">and</em> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">precipitation</span></code><em style="box-sizing: border-box;">) holds one value at each of the three coordinate dimensions.</em></p>
<p></p>
</div>
</div>
</div>
<script type="text/javascript">
(function (require) {
require(['/static/js/dateutil_factory.be68acdff619.js?raw'], function () {
require(['js/dateutil_factory'], function (DateUtilFactory) {
DateUtilFactory.transform('.localized-datetime');
});
});
}).call(this, require || RequireJS.require);
</script>
<script>
function emit_event(message) {
parent.postMessage(message, '*');
}
</script>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="VerticalStudentView" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@vertical+block@c6d05947b45848e580e701b279d6755a" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@e2d14a60153d4897abe935914206dbf2">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@e2d14a60153d4897abe935914206dbf2" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h3 style="text-align: left;">xarray.Dataset and xarray.DataArray</h3>
<p style="text-align: left;">An <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code> can be seen as a dictionary structure for packing up the data, dimensions and attributes all linked together.</p>
<p style="text-align: left;">As in the NetCDF we loaded, Digital Earth Africa follows the convention of storing spectral bands as separate variables, with each one as 3-dimensional cubes containing the temporal dimension.</p>
<p style="text-align: left;">To access a single variable we can use the same format as if it were a Python dictionary.</p>
<div class="highlight-python notranslate" style="box-sizing: border-box; border: 1px solid #e1e4e5; overflow-x: auto; margin: 1px 0px 24px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow-x: auto; margin: 0px; padding: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 12px; overflow: auto;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">var</span> <span class="o" style="box-sizing: border-box; color: #666666;">=</span> <span class="n" style="box-sizing: border-box;">dataset_name</span><span class="p" style="box-sizing: border-box;">[</span><span class="s1" style="box-sizing: border-box; color: #ba2121;">'variable_name'</span><span class="p" style="box-sizing: border-box;">]</span>
</pre>
</div>
</div>
<p style="text-align: left;">Alternatively, we can use the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.</span></code> notation.</p>
<div class="highlight-python notranslate" style="box-sizing: border-box; border: 1px solid #e1e4e5; overflow-x: auto; margin: 1px 0px 24px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow-x: auto; margin: 0px; padding: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 12px; overflow: auto;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">var</span> <span class="o" style="box-sizing: border-box; color: #666666;">=</span> <span class="n" style="box-sizing: border-box;">dataset_name</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">variable_name</span>
</pre>
</div>
</div>
<p style="text-align: left;">A single variable pulled from an <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code> is known as an <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.DataArray</span></code>. In the visualisation image on the previous page, the example <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code> is formed out of two <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.DataArray</span></code>s — one each for <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">temperature</span></code> and <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">precipitation</span></code>.</p>
<p style="box-sizing: border-box; text-align: left;"><strong style="box-sizing: border-box;">Note:</strong> Variable names are often strings (enclosed in quotation marks). This is true of most Digital Earth Africa datasets, where variables such as satellite bands have names such as <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">'red'</span></code>, <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">'green'</span></code>, <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">'nir'</span></code>. Do not forget the quotation marks in first call method above, or the data will not load.</p>
<p style="text-align: left;">The dataset we loaded only has 1 timestep. We will now pull just the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">'red'</span></code> variable data from our <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">guinea_bissau</span></code> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code>, and then plot it.</p>
<div class="nbinput docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="p" style="box-sizing: border-box;">[</span><span class="s1" style="box-sizing: border-box; color: #ba2121;">'red'</span><span class="p" style="box-sizing: border-box;">]</span>
<span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># This is equivalent to</span>
<span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># guinea_bissau.red</span>
<span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Try it!</span>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; font-family: Arial, sans-serif; text-align: left;">
<div class="output_area rendered_html docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto; padding: 5px; margin: 0px;">
<div style="box-sizing: border-box;"></div>
</div>
</div>
<div class="nbinput docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 0px; width: 696.469px; padding-top: 5px; font-family: Arial, sans-serif; text-align: left;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Plot using imshow</span>
<span class="n" style="box-sizing: border-box;">plt</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">imshow</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="p" style="box-sizing: border-box;">[</span><span class="s1" style="box-sizing: border-box; color: #ba2121;">'red'</span><span class="p" style="box-sizing: border-box;">],</span> <span class="n" style="box-sizing: border-box;">cmap</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="s1" style="box-sizing: border-box; color: #ba2121;">'Reds'</span><span class="p" style="box-sizing: border-box;">)</span>
</pre>
</div>
</div>
</div>
<div class="nboutput docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset; text-align: left;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;"><matplotlib.image.AxesImage at 0x7f6fb0b77400>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="color: #000000; box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;"><img alt="../_images/python_basics_05_xarray_22_1.png" src="https://learn.digitalearthafrica.org/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block@python_basics_05_xarray_22_1.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; padding: 5px; margin: 0px;" /></div>
</div>
<div style="box-sizing: border-box;">
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><strong style="box-sizing: border-box;">Note:</strong> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">cmap</span></code> stands for ‘colour map’. What happens if you remove this argument? <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">plt.imshow</span></code> will then plot all the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">red</span></code> data values in the default colour scheme, which is a purple-to-yellow sequential colour map known as <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">viridis</span></code>. This is because matplotlib does not know the variable name <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">red</span></code> is associated with the colour red — it is just a name. You can find out more about matplotlib colourmaps through this <a class="reference external" href="https://matplotlib.org/tutorials/colors/colormaps.html" target="_blank" style="box-sizing: border-box; color: #3091d1; text-decoration-line: none; cursor: pointer; outline: 0px;">matplotlib tutorial</a>.</p>
</div>
<p style="text-align: left;">We stated above that <em style="box-sizing: border-box;">xarray uses numpy arrays in the backend</em>. You can access these numpy arrays by adding <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.values</span></code> after a <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">DataArray</span></code> name. In the example below, <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">guinea_bissau.red</span></code> is the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">DataArray</span></code> name.</p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">red</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">values</span>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset; text-align: left;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;">array([[1007., 1007., 1069., ..., 489., 476., 422.],
[ 988., 991., 1048., ..., 456., 459., 444.],
[ 976., 1023., 1062., ..., 453., 454., 448.],
...,
[ 518., 518., 546., ..., 551., 577., 553.],
[ 517., 527., 523., ..., 530., 572., 570.],
[ 502., 490., 473., ..., 545., 576., 580.]])
</pre>
</div>
</div>
</div>
<p></p>
</div>
</div>
<div class="vert vert-1" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@b7bc8b1717d34d8cb903d31699af2d54">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@b7bc8b1717d34d8cb903d31699af2d54" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h3 style="text-align: left;">Indexing data</h3>
<p style="text-align: left;">It is possible to index <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.DataArrays</span></code> by position using the numpy <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">[:,:]</span></code> syntax we introduced in previous lessons, without converting to numpy arrays. However, we can also use the xarray syntaxes, which explictly label coordinates instead of relying on knowing the order of dimensions.</p>
<p style="text-align: left;">Each method is demonstrated below.</p>
<ul class="simple" style="box-sizing: border-box; margin-top: 0px; margin-bottom: 0px; padding-left: 0px; list-style-position: initial; list-style-type: none; text-align: left;">
<li style="box-sizing: border-box; list-style: none; text-align: left;">
<p style="text-align: left;"><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">[:,:]</span></code>: numpy syntax — requires knowing order of dimensions and positional indexes</p>
</li>
<li style="box-sizing: border-box; list-style: none; text-align: left;">
<p style="text-align: left;"><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">isel(coordinate_name</span> <span class="pre" style="box-sizing: border-box;">=</span> <span class="pre" style="box-sizing: border-box;">coordinate_index)</span></code>: index selection — xarray syntax for selecting data based on its positional index (similar to numpy)</p>
</li>
<li style="box-sizing: border-box; list-style: none; text-align: left;">
<p style="text-align: left;"><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">sel(coordinate_name</span> <span class="pre" style="box-sizing: border-box;">=</span> <span class="pre" style="box-sizing: border-box;">coordinate_value)</span></code>: value selection — xarray syntax for selecting data based on its value in that dimension</p>
</li>
</ul>
<p style="text-align: left;">For example, we can call out the value of <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">green</span></code> in the top leftmost pixel of the image dataset.</p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Using numpy syntax</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="p" style="box-sizing: border-box;">[</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">]</span>
</pre>
</div>
</div>
</div>
<p style="text-align: left;"><img src="" /></p>
<p style="text-align: left;"><span>In this case our positional indexes for </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code><span> and </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code><span> are the same, but it is important to note </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code><span> is the first dimension, and </span><code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code><span> is the second. This is not immediately obvious and can cause confusion. For this reason, it is recommended to use one of the xarray syntaxes shown below. They explicitly call on the dimension names.</span></p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Using index selection, isel()</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">isel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">y</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">,</span> <span class="n" style="box-sizing: border-box;">x</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">)</span>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area rendered_html docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto; padding: 5px; margin: 0px;">
<div style="box-sizing: border-box;"></div>
</div>
</div>
<p style="text-align: left;"><img src="" alt="" /><span></span></p>
<p style="text-align: left;">As before, the measurement for <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">green</span></code> in the top leftmost pixel is <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">730</span></code>. In this example, the <em style="box-sizing: border-box;">values</em> of <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> and <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code> are latitude and longitude values, but their <em style="box-sizing: border-box;">positional indexes</em> are <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">0</span></code>.</p>
<p style="text-align: left;">We can call out the value by using the index, as shown below.</p>
<p style="text-align: left;"><strong style="box-sizing: border-box;">Note:</strong> The CRS we are using has units of metres. This means the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> and <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code> values are measured in metres.</p>
<div style="box-sizing: border-box; text-align: left;">
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># The value of x at the pixel located at index (0,0)</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">x</span><span class="p" style="box-sizing: border-box;">[</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">]</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">values</span>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;">array(388020.)
</pre>
</div>
</div>
</div>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># The value of y at the pixel located at index (0,0)</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">y</span><span class="p" style="box-sizing: border-box;">[</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">]</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">values</span>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;">array(1338000.)
</pre>
</div>
</div>
</div>
The interpretation of the cell above is:
<div style="box-sizing: border-box; text-align: left;">
<p style="box-sizing: border-box; text-align: left;">Output the <strong style="box-sizing: border-box;">value</strong> of <strong style="box-sizing: border-box;">y</strong> in the <strong style="box-sizing: border-box;">1st position</strong> of the <strong style="box-sizing: border-box;">green</strong> variable from the dataset called <strong style="box-sizing: border-box;">guineau_bissau</strong>.</p>
We see the first element (index of 0) in <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> has a value of 388020 metres, and the first value of <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code> is 1338000 metres.
<div style="box-sizing: border-box; text-align: left;">
<p style="box-sizing: border-box; text-align: left;">How about the second method, <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">sel()</span></code>? This method was not available in the numpy arrays we used in previous lessons, and is one of the strengths of xarray as you can use the value of the dimension without knowing its positional index.</p>
<p style="box-sizing: border-box; text-align: left;">If we are given <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">(y,</span> <span class="pre" style="box-sizing: border-box;">x)</span> <span class="pre" style="box-sizing: border-box;">=</span> <span class="pre" style="box-sizing: border-box;">(1338000,</span> <span class="pre" style="box-sizing: border-box;">388020)</span></code>, we can find the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">green</span></code> measurement at that point using <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">sel()</span></code>.</p>
<div style="box-sizing: border-box; text-align: left;">
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">sel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">y</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="mi" style="box-sizing: border-box; color: #666666;">1338000</span><span class="p" style="box-sizing: border-box;">,</span> <span class="n" style="box-sizing: border-box;">x</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="mi" style="box-sizing: border-box; color: #666666;">388020</span><span class="p" style="box-sizing: border-box;">)</span>
</pre>
</div>
</div>
</div>
<p style="text-align: left;"><img src="" alt="" /></p>
</div>
</div>
</div>
</div>
<p style="text-align: left;">Finally, we can select ranges of <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">DataArrays</span></code> with the xarray syntaxes using <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">slice</span></code>. The three cells below all extract the same extent from the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">guinea_bissau.green</span></code> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">DataArray</span></code>.</p>
<p style="text-align: left;">The xarray syntaxes for ranges using <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">slice</span></code> are:</p>
<div class="highlight-python notranslate" style="box-sizing: border-box; border: 1px solid #e1e4e5; overflow-x: auto; margin: 1px 0px 24px; color: #000000; font-family: Arial, sans-serif;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow-x: auto; margin: 0px; padding: 0px; text-align: left;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 12px; overflow: auto;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">dataarray_name</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">isel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">dimension_name</span> <span class="o" style="box-sizing: border-box; color: #666666;">=</span> <span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">index_start</span><span class="p" style="box-sizing: border-box;">,</span> <span class="n" style="box-sizing: border-box;">index_end</span><span class="p" style="box-sizing: border-box;">))</span>
<span class="n" style="box-sizing: border-box;">dataarray_name</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">sel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">dimension_name</span> <span class="o" style="box-sizing: border-box; color: #666666;">=</span> <span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">value_start</span><span class="p" style="box-sizing: border-box;">,</span> <span class="n" style="box-sizing: border-box;">value_end</span><span class="p" style="box-sizing: border-box;">))</span>
</pre>
</div>
</div>
<p style="text-align: left;">As before, it is easier to call upon the dimensions by name rather than using the implicit numpy square bracket syntax, although it still works.</p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Numpy syntax - dimensions are not named</span>
<span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Valid but not recommended</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="p" style="box-sizing: border-box;">[:</span><span class="mi" style="box-sizing: border-box; color: #666666;">250</span><span class="p" style="box-sizing: border-box;">,</span> <span class="p" style="box-sizing: border-box;">:</span><span class="mi" style="box-sizing: border-box; color: #666666;">250</span><span class="p" style="box-sizing: border-box;">]</span>
</pre>
</div>
</div>
</div>
<p style="text-align: left;"><img src="" alt="" /></p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Index selection slice</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">isel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">x</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">250</span><span class="p" style="box-sizing: border-box;">),</span> <span class="n" style="box-sizing: border-box;">y</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">0</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">250</span><span class="p" style="box-sizing: border-box;">))</span>
</pre>
</div>
</div>
</div>
<p style="text-align: left;"><img src="" alt="" /></p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Value selection slice</span>
<span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">sel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">x</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">388020</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">395500</span><span class="p" style="box-sizing: border-box;">),</span> <span class="n" style="box-sizing: border-box;">y</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">1338000</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">1330530</span><span class="p" style="box-sizing: border-box;">))</span>
</pre>
</div>
</div>
</div>
<p style="text-align: left;"><img src="" alt="" /></p>
<p></p>
</div>
</div>
<div class="vert vert-2" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@2cb0d2341eb541e286a57beff8bd2957">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@2cb0d2341eb541e286a57beff8bd2957" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<h3 style="text-align: left;">Plotting data</h3>
<p style="text-align: left;">We can plot the selected area using matplotlib <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">plt.imshow</span></code>. We can also use the xarray <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.plot()</span></code> function. Plotting is a good way to check the selection is showing the top left section of the image as expected.</p>
<p style="text-align: left;">The syntax of <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">plt.imshow()</span></code> is:</p>
<div class="highlight-python notranslate" style="box-sizing: border-box; border: 1px solid #e1e4e5; overflow-x: auto; margin: 1px 0px 24px; color: #000000; font-family: Arial, sans-serif;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow-x: auto; margin: 0px; padding: 0px; text-align: left;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 12px; overflow: auto;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">plt</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">imshow</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">data</span><span class="p" style="box-sizing: border-box;">)</span>
</pre>
</div>
</div>
<p style="text-align: left;">Therefore we copy the code into the brackets of <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">plt.imshow()</span></code>.</p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">plt</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">imshow</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">sel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">x</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">388020</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">395500</span><span class="p" style="box-sizing: border-box;">),</span> <span class="n" style="box-sizing: border-box;">y</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">1338000</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">1330530</span><span class="p" style="box-sizing: border-box;">)))</span>
</pre>
</div>
</div>
</div>
<div class="nboutput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;"><matplotlib.image.AxesImage at 0x7f6fb0af2470>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;"><img alt="../_images/python_basics_05_xarray_43_1.png" src="https://learn.digitalearthafrica.org/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block@python_basics_05_xarray_43_1.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; padding: 5px; margin: 0px; float: left;" /></div>
</div>
<div style="box-sizing: border-box;">
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><strong style="box-sizing: border-box;">Note:</strong> We did not specify a colourmap <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">cmap</span></code> so you can see it takes on the default colour scheme. Plotting true-colour (RGB) images is first introduced in Session 2: Loading data in the Sandbox.</p>
</div>
<p style="text-align: left;">The syntax of the xarray plot function is:</p>
<div class="highlight-python notranslate" style="box-sizing: border-box; border: 1px solid #e1e4e5; overflow-x: auto; margin: 1px 0px 24px; color: #000000; font-family: Arial, sans-serif;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow-x: auto; margin: 0px; padding: 0px; text-align: left;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 12px; overflow: auto;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">data</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">plot</span><span class="p" style="box-sizing: border-box;">()</span>
</pre>
</div>
</div>
<p style="text-align: left;">Therefore we copy the code before we type <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.plot()</span></code>.</p>
<div class="nbinput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; padding-top: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px; text-align: left;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="n" style="box-sizing: border-box;">guinea_bissau</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">green</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">sel</span><span class="p" style="box-sizing: border-box;">(</span><span class="n" style="box-sizing: border-box;">x</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">388020</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">395500</span><span class="p" style="box-sizing: border-box;">),</span> <span class="n" style="box-sizing: border-box;">y</span><span class="o" style="box-sizing: border-box; color: #666666;">=</span><span class="nb" style="box-sizing: border-box; color: #008000;">slice</span><span class="p" style="box-sizing: border-box;">(</span><span class="mi" style="box-sizing: border-box; color: #666666;">1338000</span><span class="p" style="box-sizing: border-box;">,</span><span class="mi" style="box-sizing: border-box; color: #666666;">1330530</span><span class="p" style="box-sizing: border-box;">))</span><span class="o" style="box-sizing: border-box; color: #666666;">.</span><span class="n" style="box-sizing: border-box;">plot</span><span class="p" style="box-sizing: border-box;">()</span>
</pre>
</div>
</div>
</div>
<div class="nboutput docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px; width: 696.469px; color: #000000; font-family: Arial, sans-serif; text-align: left;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;">
<div class="highlight" style="box-sizing: border-box; background: unset; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none; color: unset;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: pre; line-height: normal; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none; background: unset;"><matplotlib.collections.QuadMesh at 0x7f6fb0a0cba8>
</pre>
</div>
</div>
</div>
<div class="nboutput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-bottom: 5px; color: #000000; font-family: Arial, sans-serif;">
<div class="output_area docutils container" style="box-sizing: border-box; flex: 1 1 0%; overflow: auto;"><img alt="../_images/python_basics_05_xarray_47_1.png" src="https://learn.digitalearthafrica.org/asset-v1:digitalearthafrica+DEA101+2021+type@asset+block@python_basics_05_xarray_47_1.png" style="box-sizing: border-box; border: 0px; vertical-align: middle; padding: 5px; margin: 0px; float: left;" /></div>
</div>
<p style="text-align: left;">The advantage of using xarray’s <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.plot()</span></code> is that it automatically shows the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> and <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code> axes using coordinate values, not their positional index.</p>
</div>
</div>
</div>
<script type="text/javascript">
(function (require) {
require(['/static/js/dateutil_factory.be68acdff619.js?raw'], function () {
require(['js/dateutil_factory'], function (DateUtilFactory) {
DateUtilFactory.transform('.localized-datetime');
});
});
}).call(this, require || RequireJS.require);
</script>
<script>
function emit_event(message) {
parent.postMessage(message, '*');
}
</script>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="VerticalStudentView" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@vertical+block@509f359b6bbe49a7a90ee3931287544a" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@4c0dfe3c8b5245c8864b05f921d9d34f">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@4c0dfe3c8b5245c8864b05f921d9d34f" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<section id="5.1-Can-you-access-to-the-crs-value-in-the-attributes-of-the-guinea_bissau-xarray.Dataset?" style="box-sizing: border-box; color: #000000;">
<h3 style="box-sizing: border-box; margin-top: 0px; font-weight: bold; font-size: 20px; color: #336699; text-align: left;">5.1 Can you access to the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">crs</span></code> value in the attributes of the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">guinea_bissau</span></code> <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">xarray.Dataset</span></code>?<a class="headerlink" href="https://training.digitalearthafrica.org/en/latest/python_basics/05_xarray.html#5.1-Can-you-access-to-the-crs-value-in-the-attributes-of-the-guinea_bissau-xarray.Dataset?" title="Permalink to this headline" style="box-sizing: border-box; color: #2980b9; text-decoration-line: none; cursor: pointer; display: inline-block; font-variant-numeric: normal; font-variant-east-asian: normal; font-weight: normal; font-stretch: normal; line-height: 1; font-family: inherit; font-size: 14px; text-rendering: auto; -webkit-font-smoothing: antialiased; visibility: hidden;"></a></h3>
<p style="box-sizing: border-box; text-align: left;"><strong style="box-sizing: border-box;">Hint:</strong> You can call upon <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">attributes</span></code> in the same way you would select a <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">variable</span></code> or <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">coordinate</span></code>.</p>
<div style="box-sizing: border-box; text-align: left;">
<div class="nbinput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-top: 5px; padding-bottom: 5px; text-align: left;">
<div class="prompt highlight-none notranslate" style="box-sizing: border-box; margin: 0px; width: 4.5ex; padding-top: 5px; position: relative; user-select: none;">
<div class="highlight" style="box-sizing: border-box; background: none; border: none; overflow-x: auto; margin: 0px 0.3ex 0px 0px; padding: 0px; box-shadow: none; position: absolute; right: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 16px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 0px; overflow: hidden; border: none; box-shadow: none; background: none; color: #307fc1;"><span style="box-sizing: border-box; border: none; padding: 0px; margin: 0px; box-shadow: none; background: none;"></span>[ ]:
</pre>
</div>
</div>
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 16px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Replace the ? with the attribute name</span>
guinea_bissau.<span class="o" style="box-sizing: border-box; color: #666666;">?</span>
</pre>
</div>
</div>
</div>
</div>
</section>
<h3 style="box-sizing: border-box; margin-top: 0px; font-weight: bold; font-size: 20px; color: #336699; text-align: left;">5.2 Select the region of the <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">blue</span></code> variable delimited by these coordinates:<a class="headerlink" href="https://training.digitalearthafrica.org/en/latest/python_basics/05_xarray.html#5.2-Select-the-region-of-the-blue-variable-delimited-by-these-coordinates:" title="Permalink to this headline" style="box-sizing: border-box; color: #2980b9; text-decoration-line: none; cursor: pointer; display: inline-block; font-variant-numeric: normal; font-variant-east-asian: normal; font-weight: normal; font-stretch: normal; line-height: 1; font-family: inherit; font-size: 14px; text-rendering: auto; -webkit-font-smoothing: antialiased; visibility: hidden;"></a></h3>
<p style="text-align: left;"><span style="color: #3c3c3c;">latitude of range [1335000, 1329030]</span></p>
<p style="text-align: left;"><span style="color: #3c3c3c;">longitude of range [389520, 395490]</span></p>
<div style="box-sizing: border-box; text-align: left;">
<p style="box-sizing: border-box; line-height: 24px; margin: 0px 0px 24px; font-size: 16px; text-align: left;"><strong style="box-sizing: border-box;">Hint:</strong> Do we want to use <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">sel()</span></code> or <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">isel()</span></code>? Which coordinate is <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">x</span></code> and which is <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 12px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">y</span></code>?</p>
</div>
<section id="5.3-Plot-the-selected-region-using-imshow,-then-plot-the-region-using-.plot()." style="box-sizing: border-box; color: #000000; font-family: Arial, sans-serif;">
<h3 style="box-sizing: border-box; margin-top: 0px; font-weight: bold; font-size: 20px; color: #336699;">5.3 Plot the selected region using <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">imshow</span></code>, then plot the region using <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">.plot()</span></code>.<a class="headerlink" href="https://training.digitalearthafrica.org/en/latest/python_basics/05_xarray.html#5.3-Plot-the-selected-region-using-imshow,-then-plot-the-region-using-.plot()." title="Permalink to this headline" style="box-sizing: border-box; color: #2980b9; text-decoration-line: none; cursor: pointer; display: inline-block; font-variant-numeric: normal; font-variant-east-asian: normal; font-weight: normal; font-stretch: normal; line-height: 1; font-family: inherit; font-size: 14px; text-rendering: auto; -webkit-font-smoothing: antialiased; visibility: hidden;"></a></h3>
<div class="nbinput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: 0px 0px 19px; width: 696.469px; padding-top: 5px; padding-bottom: 5px;">
<div class="prompt highlight-none notranslate" style="box-sizing: border-box; margin: 0px; width: 4.5ex; padding-top: 5px; position: relative; user-select: none;">
<div class="highlight" style="box-sizing: border-box; background: none; border: none; overflow-x: auto; margin: 0px 0.3ex 0px 0px; padding: 0px; box-shadow: none; position: absolute; right: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 16px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 0px; overflow: hidden; border: none; box-shadow: none; background: none; color: #307fc1;"><span style="box-sizing: border-box; border: none; padding: 0px; margin: 0px; box-shadow: none; background: none;"></span>[ ]:
</pre>
</div>
</div>
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 16px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Plot using plt.imshow</span>
</pre>
</div>
</div>
</div>
<div class="nbinput nblast docutils container" style="box-sizing: border-box; display: flex; align-items: flex-start; margin: -19px 0px 19px; width: 696.469px; padding-top: 5px; padding-bottom: 5px;">
<div class="prompt highlight-none notranslate" style="box-sizing: border-box; margin: 0px; width: 4.5ex; padding-top: 5px; position: relative; user-select: none;">
<div class="highlight" style="box-sizing: border-box; background: none; border: none; overflow-x: auto; margin: 0px 0.3ex 0px 0px; padding: 0px; box-shadow: none; position: absolute; right: 0px;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 16px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 0px; overflow: hidden; border: none; box-shadow: none; background: none; color: #307fc1;"><span style="box-sizing: border-box; border: none; padding: 0px; margin: 0px; box-shadow: none; background: none;"></span>[ ]:
</pre>
</div>
</div>
<div class="input_area highlight-ipython3 notranslate" style="box-sizing: border-box; margin: 0px; flex: 1 1 0%; overflow: auto; border: 1px solid #e0e0e0; border-radius: 2px;">
<div class="highlight" style="box-sizing: border-box; background: #f8f8f8; border: none; overflow: auto hidden; margin: 0px; padding: 0px; box-shadow: none;">
<pre style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 16px; white-space: pre; line-height: 1.4; margin-top: 0px; margin-bottom: 0px; padding: 5px; overflow: auto; border: none; box-shadow: none;"><span style="box-sizing: border-box;"></span><span class="c1" style="box-sizing: border-box; color: #408080; font-style: italic;"># Plot using .plot()</span>
</pre>
</div>
</div>
</div>
</section>
<section id="Can-you-change-the-colour-map-to-'Blues'?" style="box-sizing: border-box; color: #000000; font-family: Arial, sans-serif;">
<h3 style="box-sizing: border-box; margin-top: 0px; font-weight: bold; font-size: 20px; color: #336699; text-align: left;">5.4 Can you change the colour map to <code class="docutils literal notranslate" style="box-sizing: border-box; font-family: SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', Courier, monospace; font-size: 15px; white-space: nowrap; max-width: 100%; background-image: initial; background-color: #ffffff; border: 1px solid #e1e4e5; padding: 2px 5px; color: #e74c3c; overflow-x: auto;"><span class="pre" style="box-sizing: border-box;">'Blues'</span></code>?</h3>
</section>
</div>
</div>
</div>
<script type="text/javascript">
(function (require) {
require(['/static/js/dateutil_factory.be68acdff619.js?raw'], function () {
require(['js/dateutil_factory'], function (DateUtilFactory) {
DateUtilFactory.transform('.localized-datetime');
});
});
}).call(this, require || RequireJS.require);
</script>
<script>
function emit_event(message) {
parent.postMessage(message, '*');
}
</script>
</div>
<div class="xblock xblock-public_view xblock-public_view-vertical" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="VerticalStudentView" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="vertical" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@vertical+block@30499597041d4ab18a5258dd6849b549" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<div class="vert-mod">
<div class="vert vert-0" data-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@f661a5f7b2ea4912a88edc0f12379fcb">
<div class="xblock xblock-public_view xblock-public_view-html xmodule_display xmodule_HtmlBlock" data-course-id="course-v1:digitalearthafrica+DEA101+2021" data-init="XBlockToXModuleShim" data-runtime-class="LmsRuntime" data-runtime-version="1" data-block-type="html" data-usage-id="block-v1:digitalearthafrica+DEA101+2021+type@html+block@f661a5f7b2ea4912a88edc0f12379fcb" data-request-token="1b5e9822881611efa85e837f534d2eba" data-graded="False" data-has-score="False">
<script type="json/xblock-args" class="xblock-json-init-args">
{"xmodule-type": "HTMLModule"}
</script>
<p style="text-align: left;">Xarray is an important tool when dealing with Earth observation data in Python. Its flexible and intuitive interface allows multiple methods of selecting data and performing analysis.</p>
</div>
</div>
</div>
<script type="text/javascript">
(function (require) {
require(['/static/js/dateutil_factory.be68acdff619.js?raw'], function () {
require(['js/dateutil_factory'], function (DateUtilFactory) {
DateUtilFactory.transform('.localized-datetime');
});
});
}).call(this, require || RequireJS.require);
</script>
<script>
function emit_event(message) {
parent.postMessage(message, '*');
}
</script>
</div>